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 IntroductionIntroduction

 Distributed data mining:Distributed data mining:
 OverviewOverview
 Distributed Bayesian network learningDistributed Bayesian network learning
 Distributed decision tree learningDistributed decision tree learning

 ApplicationsApplications
 Mining NASA DAO and NOAA dataMining NASA DAO and NOAA data
 Mining distributed virtual observatoriesMining distributed virtual observatories

 Conclusions and future workConclusions and future work



OverviewOverview
 Goal: Goal: Analyzing distributedAnalyzing distributed

heterogeneous data byheterogeneous data by
properly utilizing distributedproperly utilizing distributed
resources.resources.

 Contributions:Contributions:
–– Distributed computation ofDistributed computation of

 Statistical aggregatesStatistical aggregates
 Decision treesDecision trees
 Bayesian networks.Bayesian networks.

–– Algorithms for monitoringAlgorithms for monitoring
distributed data streams.distributed data streams.

–– Mining NASA/NOAA AVHRRMining NASA/NOAA AVHRR
data and the virtualdata and the virtual
observatory data.observatory data.

Distributed Sensor net

Distributed data archives

Wirless network Onboard science

Virtual Observatories

DISTRIBUTED DATA MINING



Broader ImpactsBroader Impacts
–– Mining Databases from distributed sitesMining Databases from distributed sites

 Counter-terrorism, bioinformaticsCounter-terrorism, bioinformatics

–– Monitoring Multiple time critical data streamsMonitoring Multiple time critical data streams
 Monitoring vehicle data streams in real-timeMonitoring vehicle data streams in real-time
 Onboard scienceOnboard science

–– Analyzing Lightweight sensor websAnalyzing Lightweight sensor webs
 Limited network bandwidthLimited network bandwidth
 Limited power supplyLimited power supply

–– Preserving privacyPreserving privacy
 Security/Safety related applicationsSecurity/Safety related applications



Why Bother?Why Bother?

 (Left) Data table at site 1.(Left) Data table at site 1.

 (Middle) Data table at site 2.(Middle) Data table at site 2.

 (Right) Joined data table (based on the shared feature x(Right) Joined data table (based on the shared feature x11) needed for) needed for
centralized data mining systems.centralized data mining systems.

 Problems:Problems:
–– Construction of the join is computationally expensiveConstruction of the join is computationally expensive
–– Supporting repeated queries (e.g. for streams) may be too expensive for theSupporting repeated queries (e.g. for streams) may be too expensive for the

communication-bandwidth.communication-bandwidth.
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Mining Mining a Networka Network of Virtual of Virtual
ObservatoriesObservatories

 The Sloan Digital Sky Survey (SDSS) and theThe Sloan Digital Sky Survey (SDSS) and the
2MASS All-Sky Survey.2MASS All-Sky Survey.

 Five filters from SDSS and three filters fromFive filters from SDSS and three filters from
2MASS.2MASS.

 Analyze data from SDSS and 2MASS:Analyze data from SDSS and 2MASS:
–– Cluster the set of objects using attributes from bothCluster the set of objects using attributes from both

the observatoriesthe observatories
–– Identify outliersIdentify outliers
–– Learn classifiersLearn classifiers



Distributed Randomized Inner ProductDistributed Randomized Inner Product
ComputationComputation

  Site 1  Site 1          Site2         Site2  Site 1 computes ZSite 1 computes Z1k1k
–– ZZ1k1k=A1.J=A1.J11+..+An.J+..+An.Jnn

– Ji ∈ {+1,-1} with
uniform probability

 Site 2 calculates ZSite 2 calculates Z2k2k
–– ZZ2k2k=B1.J=B1.J11+..+Bn.J+..+Bn.Jnn

 ComputeCompute  zz1k1k.z.z2k 2k for afor a
few times and take thefew times and take the
averageaverage
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Relative Error vs. CommunicationRelative Error vs. Communication
CostCost



DDecisionecision Tree Induction From Vertically Tree Induction From Vertically
Partitioned Distributed DataPartitioned Distributed Data

 Site1 Site 2



Heterogeneous DDM and DecisionHeterogeneous DDM and Decision
TreesTrees

 Distributed Randomized Inner Product (DRIP)Distributed Randomized Inner Product (DRIP)
computationcomputation

 Computing information gain using DRIP.Computing information gain using DRIP.

 Information gain computation can be posed asInformation gain computation can be posed as
an inner product computation problem.an inner product computation problem.
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Experimental ResultsExperimental Results



Distributed BN LearningDistributed BN Learning
 A Bayesian network (BN) is a probabilisticA Bayesian network (BN) is a probabilistic

graph model.graph model.
 Two problems: Structure and ParameterTwo problems: Structure and Parameter

learning.learning.
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Collective BN LearningCollective BN Learning
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NASA DAO/NOAA AVHRRNASA DAO/NOAA AVHRR
Pathfinder Data ModelPathfinder Data Model

 Multi-dimensional time series dataMulti-dimensional time series data

Time

Jan 1983 Dec 1992

•  •   • (f1, f2, …, fn)

Longitude

Latitude



PreprocessingPreprocessing

 Feature SelectionFeature Selection
 Data CoordinationData Coordination
 Clustering: SClustering: Segment grid points intoegment grid points into

local homogenous regions.local homogenous regions.
 Z score normalizationZ score normalization
 QuantizationQuantization



Feature SelectionFeature Selection

 We used as many features as possible.We used as many features as possible.
 Features with following characteristicsFeatures with following characteristics

were dropped.were dropped.
–– Many missing valuesMany missing values
–– Multi-layer featuresMulti-layer features
–– Almost deterministic featuresAlmost deterministic features

 Used 15 DAO and 7 NOAA featuresUsed 15 DAO and 7 NOAA features



NASA DAO featuresNASA DAO features

Index             Feature          Description

 1   1   CldfrcCldfrc 2-dimensional total cloud fraction2-dimensional total cloud fraction
 2   2   EvapsEvaps    Surface evaporationSurface evaporation
 3   3   OlrOlr        outgoing outgoing longwavelongwave radiation radiation
 4   4   OsrOsr        outgoing shortwave radiationoutgoing shortwave radiation
 5   5   PblPbl        planetary boundary layer depthplanetary boundary layer depth
 6   6   preaccpreacc  total precipitationtotal precipitation
 7   7   qintqint      precipitableprecipitable water water
 8   8   radlwgradlwg  net upward net upward longwavelongwave radiation at ground radiation at ground
 9  9  radswgradswg  net downward shortwave radiation at groundnet downward shortwave radiation at ground
 10  10  t2m    t2m    temperature at 2 meters temperature at 2 meters 
 11  11  tgtg          Ground temperatureGround temperature
 12  12  ustarustar    Surface stress velocitySurface stress velocity
 13  13  vintuqvintuq  vertically averaged vertically averaged uwnduwnd**sphusphu
 14  14  vintvqvintvq  vertically averaged vertically averaged vwndvwnd**sphusphu
 15 15 winds   winds   Surface wind speedSurface wind speed



NOAA featuresNOAA features

  Index     Feature          Description

 16  16          asftsasfts  Absorbed Solar Flux total/dayAbsorbed Solar Flux total/day
 17  17          olrcsolrcs day   day  Outgoing Long Wave Radiation clear/dayOutgoing Long Wave Radiation clear/day
 18 18         olrcsolrcs night  night Outgoing Long Wave Radiation clear/nightOutgoing Long Wave Radiation clear/night
 19 19         olrtsolrts day  day Outgoing Long Wave Radiation total/dayOutgoing Long Wave Radiation total/day
 20 20         olrtsolrts night  night Outgoing Long Wave Radiation total/nightOutgoing Long Wave Radiation total/night
 21 21         tcftcf day  day Total Fractional Cloud Coverage dayTotal Fractional Cloud Coverage day
 22 22         tcftcf night  night Total Fractional Cloud Coverage nightTotal Fractional Cloud Coverage night



Feature Feature CldfrcCldfrc in March (left) and in March (left) and
August (right), 1983August (right), 1983



Coordination and ClusteringCoordination and Clustering

 CoordinationCoordination: re-grid the NOAA dataset: re-grid the NOAA dataset
into DAO format.into DAO format.

 SpatioSpatio-temporal Clustering-temporal Clustering: S: Segmentegment
datasets into local homogenous regions indatasets into local homogenous regions in
spatial and temporal domain.spatial and temporal domain.

 Each cluster is modeled using a BayesianEach cluster is modeled using a Bayesian
network.network.



SpatioSpatio-temporal Clustering-temporal Clustering

 Temporal clusteringTemporal clustering: choose same: choose same
month data.month data.

 Spatial clusteringSpatial clustering
–– Average the data from same month. GetAverage the data from same month. Get

one frame of data in spatial domain.one frame of data in spatial domain.
–– Clustering: k-mean, fuzzy c-mean, and EM.Clustering: k-mean, fuzzy c-mean, and EM.



Clustering Results: DAOClustering Results: DAO



Clustering Results: NOAAClustering Results: NOAA



Quantization ResultsQuantization Results



Bayesian network LearningBayesian network Learning
ResultsResults

 Compare the Bayesian Networks:Compare the Bayesian Networks:
––  B Bcntrcntr learnt using centralized method. learnt using centralized method.
––  B Bcollcoll learnt using collective method. learnt using collective method.

 Metric: structure error = Number ofMetric: structure error = Number of
missing links + Number of extra links.missing links + Number of extra links.



ResultResult
 BBcntrcntr  –– 64 local links and 9 cross links. 64 local links and 9 cross links.



Some of the Cross Links BetweenSome of the Cross Links Between
NOAA and DAO AttributesNOAA and DAO Attributes

 Surface evaporation, Absorbed Solar Flux total/daySurface evaporation, Absorbed Solar Flux total/day
 outgoing outgoing longwavelongwave radiation, Absorbed Solar Flux total/day radiation, Absorbed Solar Flux total/day
 outgoing outgoing longwavelongwave radiation, Outgoing Long Wave Radiation radiation, Outgoing Long Wave Radiation

clear/dayclear/day
 outgoing outgoing longwavelongwave radiation, Outgoing Long Wave Radiation radiation, Outgoing Long Wave Radiation

clear/nightclear/night
 precipitableprecipitable water, Absorbed Solar Flux water, Absorbed Solar Flux
 temperature at 2 meters, Outgoing Long Wave Radiationtemperature at 2 meters, Outgoing Long Wave Radiation

clear/dayclear/day
 temperature at 2 meters, Outgoing Long Wave Radiationtemperature at 2 meters, Outgoing Long Wave Radiation

clear/nightclear/night
 Ground temperature, Absorbed Solar Flux total/dayGround temperature, Absorbed Solar Flux total/day
 Ground temperature, Outgoing Long Wave Radiation total/nightGround temperature, Outgoing Long Wave Radiation total/night



NASA DAO/NOAA Structure Learning ResultsNASA DAO/NOAA Structure Learning Results



Applications in Mobile Sensor Networks:Applications in Mobile Sensor Networks:
Vehicle Data Stream MiningVehicle Data Stream Mining

  On-board Module:On-board Module:
  Continuous data streams fromContinuous data streams from
   the vehicle data bus   the vehicle data bus
 Onboard data stream mining Onboard data stream mining
 Communicates with a remote Communicates with a remote
   control station   control station
 Privacy management Privacy management

  Central control station:Central control station:
  Data ManagementData Management
 Data mining Data mining
 Communicates with the on-board Communicates with the on-board
   modules over wireless networks   modules over wireless networks
  Privacy managementPrivacy management



ConclusionsConclusions

 Distributed data mining: A new way to doDistributed data mining: A new way to do
data mining in distributed environmentsdata mining in distributed environments

 Applications in mining,Applications in mining,
–– Large distributed collection of repositoriesLarge distributed collection of repositories
–– Bandwidth/power constrained sensor networksBandwidth/power constrained sensor networks
–– Privacy-sensitive multi-party dataPrivacy-sensitive multi-party data
–– Scalable time-critical analysis of data streams fromScalable time-critical analysis of data streams from

different sourcesdifferent sources



Web siteWeb site

 http://http://www.cs.umbc.edu/~hillol/nasap.htmlwww.cs.umbc.edu/~hillol/nasap.html
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PreprocessingPreprocessing

 ClusteringClustering: : Chose a cluster that roughlyChose a cluster that roughly
corresponds to the rectangular region fromcorresponds to the rectangular region from
(170W, 60S) to (90W, 0)(170W, 60S) to (90W, 0)

 Z score normalizationZ score normalization
 QuantizationQuantization: : DDiscretizeiscretize the continuous the continuous

feature value into discrete levelsfeature value into discrete levels based on its based on its
histogram.histogram.

 After above steps, we get 12 datasets, oneAfter above steps, we get 12 datasets, one
for each month (aggregated over years 1983-for each month (aggregated over years 1983-
1992).1992).
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Quantization ResultsQuantization Results


